Production System Development

Jessica Bruch jessica.bruch@mdh.se

Erik Flores erik.flores@mdh.se

- Production system development a process perspective
- Introducing a framework (mindset) and a structured way of working for production system development
- Simulation in production system development
- Problem formulation

Learning Outcomes

- Demonstrate knowledge and fully be able to explain what a process is and why you should apply a process in development projects
- Demonstrate knowledge and be able to describe the development process role in the design of production systems
- Understand basic simulation concepts
- Establish the importance of problem formulation

- How have you worked so far?
- How have you proceeded?
- What has been a good approach, what could have been done in a different way?

• Based on your reflection how can you continue to work in the remaining project?

• "A process is a repetitive network within a certain order linked activities using information and resources to transform 'object in' to 'object out', from identification to satisfaction of customer needs."

Development as a process

 $\mathbf{ }$

- A process is as a road, starting with a need and ending in satisfaction
- The road (process) is used by different vehicles (projects)

Product Development Process

Illustration Mario Celegin adopted from Bellgran and Säfsten, 2000

10

What are the benefits of having a development process?

- Increasing the stability of the work, knowing which stage you are in
- Helping to plan your project
- Helps different department work together
- Routines often secure higher quality
- Easier to lean from other project
- Possible to improve the process

Process goes through different departments

Transfer of experiences between projects

Maturity level of the production system design process

Bellgran 1998

Is it common for manufacturing companies to have a production system development process?

General design process

Analysis

- Requirement specification
- Design or construction of subsystems
- Integration of subsystems into totality
- Evaluation and decision

General design process

Supplier-driven design process

General design process

Supplier-driven design process

MALARDALEH UNIVERSITY SWEDEN SUBMIT

- Focus on the development process is necessary for a sustainable production development capability
- A framework creates systematic thinking

 includes planning <u>and</u> design/development
- A systematic way of working support focus on the task of designing

Illustration Mario Celegin adopted from Bellgran and Säfsten, 2000

Simulation in Production Process Development

Tell Us About You

- How have you worked so far?
- How have you proceeded so far?
- How can we make sure we will get the answer we expect?
- When do we make sure we get the answer we wish for?

Trying things early on

What are our options?

Trying things early on

Simulation as a tool

- A model is defined as representation of a system for the purpose of studying that system.
 Banks (2010)
- Modeling is an approximation of a system, it is not an exact representation, i.e. we can not model every aspect of the system - Strickland (2010)
- A modeler has to make decisions about content and assumptions of the model

- Robinson (2004)

- An immitation of a system
- An immitation (on a computer) of a system as it progresses through time
- Experimentation with a simplified imitation (on a computer) of an operations system as it progresses through time, for the purpose of better understanding or improving that system

- Robinson (2004)

Why is simulation useful?

- Experiment without disruption
- Test before rollout
- Hypothesis and feasibility
- Time for experimentation
- Variable interaction
- What if...?
- Bottlenecks

• Historical data

- Account for uncertainty
- Doing the right thing
- Doing the thing right

Simulation process MÄLARDALEN UNIVERSITY SWEDEN

+

- Banks (2010)

What is the Problem?

If I were given one hour to save the planet, I would spend 59 minutes defining the problem and one minute resolving it Albert Einstein

What is the Problem?

Toyota's Way

5 Why´s

- 1. Grasping situation thoroughly with an open mind
- 2. Go to where the problem is
- 3. First attempt at identifying the problem
- 4. Where is the problem observed?
- 5. What is the likely cause?

- Liker (2004)

An outsider's view

MÄLARDALEN UNIVERSITY SWEDEN

- Problem stated by a decision maker
 - It may not be stated precisley or in quantitative terms
 - Iterations are often necessary
- Meet stake holders
 - Overall objectives
 - What **specific question** is to be answered?
 - What performance measure will you use to evaluate this?
 - Define scope of your study
 - Time frame for you study
- Collect information
 - Make sure you know what information you will collect
 - Collect information from a reliable source
 - Document assumptions, summarized date, etc.

- Law (2009)

Solving the Right Problem

- **1**. Establish the Need for a Solution
 - What is the basic need?
 - What is the desired outcome?
 - Who stands to benefit and why?

Solving the Right Problem

2. Justify the need

MÄLARDALEN UNIVERSITY SWEDEN

- Aligned with company strategy?
- What are the desired benefits and how will we measure them?
- How will we ensure that a solution is implemented?

- Spradlin (2012)

Solving the Right Problem

3. Contextualize the problem

MÄLARDALEN UNIVERSITY SWEDEN

- What approaches have been tried?
- What have others tried?
- What constraints do we have?

- Spradlin (2012)

Solving the Right Problem

4. We can now write the problem statement

MÄLARDALEN UNIVERSITY SWEDEN

- Spradlin (2012)

Summary

- Problem formulation is the most important part
- Methods / Strategies exist to define problem
- Outsider's perspective
- Solving the right problem

PPU431 – Industrial Excellence

Are you up for the Challenge?

- The roll of **Manufacturing Strategy** in a company
- The importance that Production Development plays in competitiveness
- Based on a real-life case of relevance to industry

PPU432 – Simulation of production systems

 Develop competence in the use of discrete event simulation (DES) – theory, hands on exercises, and workshops

- Support the improvement of industrial processes that involve complex change
- **Close to industry** participation of industrial partners in the region

